Die Schulmathematik streift den Zahlenbereich der komplexen Zahlen nur am Rande, und zwar wenn quadratische Gleichungen gelöst werden sollen. Oft erfährt man an dieser Stelle, dass es für die Wurzel aus negativen Zahlen durchaus Lösungen gibt, diese jedoch im Bereich der komplexen Zahlen liegen.
So wird ? -1 = i gesetzt, der sog. imaginären Einheit. Es gilt i² = -1. Diese imaginäre Einheit bildet die Grundlage der komplexen Zahlen. Jede komplexe Zahl hat die Form a + bi, wobei a den Realteil darstellt und b den Imaginärteil. An dieser Form erkennt man, dass durch die Einführung der imaginären Einheit i die reellen Zahlen erweitert wurden. Wenn b = 0 vorliegt, handelt es sich nämlich um eine reelle Zahl.
Gleichungen mit komplexen Zahlen - so gehen Sie vor
Egal, ob Sie lineare Gleichungen, ein Gleichungssystem oder auch andere Gleichungen haben, die komplexe Zahlen enthalten, so können Sie diese immer mit ein paar einfachen Grundregeln lösen.
Gleichungen mit komplexen Zahlen haben im Allgemeinen auch komplexe Zahlen als Lösung. Da sich realer und imaginärer Bestandteil einer komplexen Zahl nicht vermischen, sollten Sie die Gleichung immer in einen Realteil und einen Imaginärteil aufteilen. Aus einer "normalen" Gleichung wird auf diese Weise eine Gleichung für den Realteil, sowie eine Gleichung für den Imaginärteil. Beide werden getrennt gelöst. Die Gesamtlösung (als komplexe Zahl) setzt sich dann aus der Lösung für den Realteil, sowie der Lösung des Imaginärteils zusammen.
Gleichung mit komplexen Zahlen - ein durchgerechnetes Beispiel
In diesem Beispiel soll die Gleichung 2z + 3i = 5z - 2 gelöst werden. Dabei bedeutet z = x + yi die komplexe Lösung dieser Gleichung (x und y müssen Sie berechnen) und i die oben erklärte imaginäre Einheit.
1. Zunächst setzen Sie den Ansatz für z in die Gleichung ein und erhalten: 2x + 2yi + 3i = 5x + 5yi - 2 2. Nun teilen Sie die Gleichung in Real- und Imaginärteil auf und erhalten für den Realteil: 2x = 5x - 2 und die Lösung x = 2/3. Für den Imaginärteil erhalten Sie 2yi + 3i = 5yi oder (einfacher) 2y + 3 = 5y und die Lösung y = 1. 3. Die komplexe Lösung der Gleichung lautet dann z = 2/3 + 1i = 2/3 + i.